Mitochondrial Networks in Cardiac Myocytes Reveal Dynamic Coupling Behavior
نویسندگان
چکیده
منابع مشابه
Cardiac myocytes' dynamic contractile behavior differs depending on heart segment.
Cardiac myocytes originating from different parts of the heart exhibit varying morphology and ultrastructure. However, the difference in their dynamic behavior is unclear. We examined the contraction of cardiac myocytes originating from the apex, ventricle, and atrium, and found that their dynamic behavior, such as amplitude and frequency of contraction, differs depending on the heart segment o...
متن کاملSpatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters.
Mitochondrial networks in cardiac myocytes under oxidative stress show collective (cluster) behavior through synchronization of their inner membrane potentials (DeltaPsi(m)). However, it is unclear whether the oscillation frequency and coupling strength between individual mitochondria affect the size of the cluster and vice versa. We used the wavelet transform and developed advanced signal proc...
متن کاملMitochondrial membrane potential in cardiac myocytes.
Mitochondria are involved in cellular functions that transcend the traditional role of these organelles as the energy factory of the cell. Their relative inaccessibility and the difficulties involved in attempts to study them in their natural environment -- the cytosol -- has delayed much of this understanding and they still have many secrets to yield. One of the relatively new fields in this r...
متن کاملA dynamic model of excitation-contraction coupling during acidosis in cardiac ventricular myocytes.
Acidosis in cardiac myocytes is a major factor in the reduced inotropy that occurs in the ischemic heart. During acidosis, diastolic calcium concentration and the amplitude of the calcium transient increase, while the strength of contraction decreases. This has been attributed to the inhibition by protons of calcium uptake and release by the sarcoplasmic reticulum, to a rise of intracellular so...
متن کاملCalmodulin regulation of excitation-contraction coupling in cardiac myocytes.
Calmodulin (CaM) as a ubiquitous Ca2+ sensor interacts with multiple key molecules involved in excitation-contraction (EC) coupling. In the present study, we report that adenoviral expression of a mutant CaM lacking all of its four Ca2+-binding sites, CaM(1-4), at a level 6.5-fold over endogenous CaM markedly increases the amplitude and abbreviates the decay time of Ca2+ transients and contract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2015
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2015.01.040